Challenges of primate embryonic stem cell research.
نویسندگان
چکیده
Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.
منابع مشابه
P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملInduced Pluripotent Stem Cells: Challenges and Opportunities
Regenerative capacity of mammals is limited and can rarely regenerate a specific organ or tissue fully. Due to these limitations, regenerative medicine seeks efficient and safe cell sources for regeneration of damaged tissues and organs or treatment for incurable diseases. Human embryonic stem cells (HESCs) hold two important properties called self renewal and pluripotency. However, the use of ...
متن کاملحمایت حقوقی از ابداعات فناوری سلولهای بنیادی جنینی در نظام حق اختراع
Research and experimentation on embryonic stem cells has opened new horizons in different fields of medical science. The particular characteristic of these cells in its ability to produce different body cells has raised the hopes for treating a wide range of diseases and repairing damaged tissues. Alongside the progress in research and technology, a variety of legal challenges have also been po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cloning and stem cells
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2005